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We study the organization of spherocylindrical molecules inside a freely rotating right cir-
cular cylindrical domain at the gas/liquid interface. The analysis is made under the assumption
that the molecules are rigid and close packed, and that they are oriented parallel to each other.
The direction and angle of their common orientation are completely arbitrary. We obtain ex-
act analytic expressions for the lattice of molecular centers and its boundaries as a function
of molecular dimensions, molecular orientation, and domain size. As a first application, we
derive the number of molecules in a domain, and the packing fraction. The results obtained
are essential when attempting to analytically model a Langmuir film where the global order of
the film is less than the local order of the domains.
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1. Introduction

In this paper (as in [1,2]), we are concerned with the theoretical modeling of the
molecular organization of Langmuir films at the gas/liquid interface. Specifically we
study the close packing of spherocylindrical molecules inside a right circular cylindrical
freely rotating domain whose axis is perpendicular to the interface. By treating the
problem at two scales simultaneously we are able to account for boundary effects. We
obtain exact analytic expressions for the lattice of molecular centers and its boundaries
as a function of molecular dimensions, molecular orientation, and domain size. As a first
application of this structural study, we evaluate the packing fraction as a function of the
size of the domain, the size of the molecules, and the orientation of the molecular axes.

Experimentally, monolayers of amphiphilic molecules at the air/water interface
show some characteristic patterns even when simple lipids are used [3]. When mono-
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layers are transferred onto plates Langmuir–Blodgett films are obtained. One to sev-
eral layers can be deposited by this technique. Experimentally, periodic structures are
observed in lipid monolayers when, in order to study pattern organization, low con-
centration fluorescent probes are introduced in the lipid films [4,5]. These patterns
influence the formation of micelles, vesicles, liposomes, membranes, and Langmuir–
Blodgett films [3]. X-ray diffraction and scanning probe microscopy also reveal pattern
organization in these mono- and multi-layers [6,7], and Brewster angle microscopy on
Langmuir films is used to study the domain morphology [8,9]. In phospholipid bilayers
some patterns are observed using atomic force microscopy [10,11]. A good review of
the subject is given by McConnell [12].

The first step in the study of the organization of bilayers, multilayers, liposomes,
etc. is the study of the organization of the monolayer film. This study can be separated
into two parts: structural organization and dynamics. Organization mainly depends on
molecular dimensions and orientation. Dynamics mainly depends on the Van der Waals
interactions between the aliphatic chains, and the electrostatic interactions between the
polar heads and the liquid phase. Due to the complexity of the problem, we have chosen
to study the above two parts sequentially.

In the first article on structural organization, we studied the case of spherocylin-
drical molecules aligned vertically [1]. The boundary effects, in as far as the domain
density is concerned, were found to be non-negligible (about 2.5%) for domains con-
taining less than 10,000 molecules and as high as 20% for small domains. This first
article allowed us to clarify the physical basis of the model, to introduce the appropriate
notation, and to develop the mathematical techniques needed in packing inside a cylin-
drical domain. We exploited the hexagonal symmetry, present in the case of vertically
aligned molecules, in order to define the coordinate axes, and the half-way plane. We
also defined the reference lattice formed by the intersection of the molecular axes of the
vertically aligned molecules with the half-way plane. Most important, from this study
we learned how to handle the two-dimensional boundary problem of packing circular
molecular cross-sections inside a circular domain cross-section.

The second article in the series dealt with inclined spherocylindrical molecules
tilted toward next nearest neighbors [2]. The importance of boundary effects was found
(as expected) to increase rapidly with the angle of inclination and length of the mole-
cules. The case of tilted molecules lead to a packing problem that is irreducibly three-
dimensional, and we used projective geometry to determine the boundaries of the lattice
formed by the centers of the molecules of the domain. The complexity of the problem
in the case of inclined molecules forced us to restrict the analysis to only one specific
direction of inclination.

In this third paper of the series, we study the general case of arbitrarily oriented
molecules aligned parallel to each other and inscribed within a right circular cylindri-
cal domain. The solution, as presented here, is essential when attempting to model a
Langmuir film. The film is built up of a distribution of domains with variable molec-
ular orientations, and the structure of the distribution function determines the ratio of
the degree of global order (at the film scale) to the degree of intermediate order (at the
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domain scale). The handling of this general problem has been greatly simplified by the
progressive solution of its various facets in the two preceding articles of the series, and
by the introduction of the tilting operator [13], which transforms the initial reference lat-
tice (lattice of the centers of vertically aligned molecules) into the lattice of the centers
of arbitrarily oriented molecules. The application of the tilting operator to the refer-
ence lattice of hexagonally packed molecules constitutes the starting point of the present
work.

We will use three-dimensional graphic simulations (a virtual-reality representation
of the domain) to complement the analytic algebraic results. These graphic simulations
provide an instant independent visual verification of the mathematical results obtained.

2. The model

We will only give a summary of the essential features of the underlying model
and refer the reader to [1,2,13] for details and justification. Globally the system we
are dealing with presupposes phospholipidic molecules arranged in domains forming a
Langmuir film at the gas/liquid interface. The molecules of the domain are embedded
in identical “virtual” spherocylindrical [14] (rod-like [15]) molecules that are aligned
parallel to each other. It is assumed that as the molecules are inclined they slide along
each other (obliquely) in order for their polar heads to remain tangent to a plane parallel
to the interface. That is, we assume hydrodominance [13].

2.1. The molecules

The spherocylindrical molecule is shown in figure 1. The molecular cylinder has
radius r0 and height h. The molecular hemispheres have radius r0. The total length d

of the molecule is given by d = h+ 2r0. The molecules are assumed to be all identical
and aligned parallel to each other. Their collective orientation is given by the spherical
angles θ and φ, with the z-axis in the direction of the normal to the interface.

2.2. The domain

We refer to the above assembly of parallel molecules as the “physical domain”. The
“virtual domain” is a right circular cylinder enveloping the molecules of the “physical
domain” as shown in figure 2. The axis of this circumscribing cylinder is perpendicular
to the gas/liquid interface. Its radius R and height H are determined by the condition
that R and H be as small as possible. The height H depends on the inclination of the
molecules relative to the interface, and is given by H(r0, h, θ) = 2r0 + h cos θ . The
radius R is equal to half the largest dimension of the projection of the “physical domain”
on the interface. Its value is a function of the number of molecules in the domain, the
dimensions of these molecules, and their angle and direction of inclination. The word
domain, without qualification, will throughout the paper denote the virtual cylindrical
circumscribing domain.
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Figure 1. Spherocylindrical molecule at the gas/liquid interface. The half-way plane is parallel to the
interface and passes through the center of symmetry of the molecule. The molecule is tilted by an angle θ

with respect to the normal to the interface. The direction of tilting is φ.

2.3. The half-way plane

The plane perpendicular to the symmetry axis of the virtual domain and situated
half-way in-between the base and the top is referred to as the half-way plane. The
points of intersection of the molecular axes with the half-way plane (the centers of the
molecules) define a two-dimensional lattice in this plane (see figure 3). The cross-section
of the virtual domain in the half-way plane is a disc of radius R. The symmetry axis of
the virtual domain passes through the center of this disc. The projection of the physical
domain on the half-way plane possesses reflection symmetry through this center. This
reflection symmetry is unique to the half-way plane, and is the main reason for choosing
to work in it rather than in the plane of the interface.
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Figure 2. The physical domain of parallel spherocylindrical molecules having an arbitrary collective ori-
entation is confined within a virtual cylindrical domain. The parameters used in generating the figure are
R/r0 = 15, h/r0 = 20, θ = π/6, and φ = −π/4. The resulting domain radius is Rmin/r0 = 14.9796,
the number of molecules is N = 83, and the packing fraction is β = 0.40843. For very large domains, the

domain is essentially a thin disc.

2.4. The reference lattice

When the molecules of the physical domain are vertically oriented we refer to the
lattice of the centers of the molecules as the “reference lattice”. In the case of vertically
oriented molecules, the optimal packing of spherocylindrical (rod-like) molecules in a
cylindrical domain is hexagonal [1], and consequently, the reference lattice has three
principal and three secondary axes of symmetry as shown in figure 4. The high de-
gree of symmetry in the case of vertically aligned molecules simplifies the process of
introducing and defining a system of axes.
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Figure 3. The lattice (in the half-way plane) formed by the centers of the molecules of the domain. The
occupied lattice sites (corresponding to the centers of the molecules that are confined in the domain) are
indicated by dark disks. The parameters used in generating the figure are R/r0 = 15, h/r0 = 20, θ = π/6,
and φ = −π/12. The resulting domain radius is Rmin/r0 = 14.9796, the number of molecules is N = 83,

and the packing fraction is β = 0.40843.

2.5. The coordinate systems

Using the symmetry axes of the reference lattice, we introduce three coordinate
systems as shown in figure 5. The first is the (x̂, ŷ, ẑ) coordinate system which is fixed
to the half-way plane, and defined as follows: (i) the z-axis coincides with the axis of the
circumscribing cylinder, (it is normal to the interface); (ii) the intersection of the z-axis
with the half-way plane defines the origin of coordinates; (iii) the xy plane coincides
with the half-way plane; (iv) the x-axis coincides with one of the secondary axes of
symmetry; (v) the y-axis coincides with one of the principal axes of symmetry. Due
to the hexagonal symmetry of the reference lattice, the above system of coordinates is
orthogonal. As the molecules are tilted, the half-way plane moves relative to the interface
and this (x̂, ŷ, ẑ) coordinate system moves with it.
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Figure 4. The “reference” lattice of vertically oriented molecules serves to define the system of axes. The
origin is at the center of the central molecule. The z-axis is in the direction of the normal to the interface.
The y-axis is in the direction of a principal axis of symmetry. The x-axis is in the direction of a secondary
axis of symmetry. Hexagonal symmetry guaranties that the system of axes is orthogonal. The parameters
used in generating the figure are R/r0 = 6, h/r0 = 20, θ = 0, and φ = 0. The resulting domain radius is

Rmin/r0 = 5, the number of molecules is N = 19, and the packing fraction is β = 0.73697.

Next we introduce the (m̂, n̂, ẑ) coordinate system, which is also fixed to the half-
way plane. It is obtained from the (x̂, ŷ, ẑ) coordinate system by a rotation φ about the
ẑ-axis. Hence, (

m̂

n̂

)
=
(

cosφ sin φ

− sinφ cosφ

)(
î

ĵ

)
, (1)

where î and ĵ are unit vectors along x̂ and ŷ, respectively.
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Figure 5. The three systems of coordinates. The (x̂, ŷ, ẑ) coordinate system is as defined in figure 4 and
is fixed to the half-way plane. The (m̂, n̂, ẑ) coordinate system is obtained from the (x̂, ŷ, ẑ) coordinate
system by a rotation of angle φ about the ẑ axis. The (X̂, Ŷ , Ẑ) coordinate system is “fixed in space”. It’s
origin is on the interface. Its axes are parallel to the (x̂, ŷ, ẑ) axes. Its Ẑ-axis coincides with the ẑ-axis. The
lattice is that of vertically oriented molecules. The parameters used in generating the figure are h/r0 = 20,

θ = 0, and φ = −50◦.

Finally, we introduce the space-fixed coordinate system (X̂, Ŷ , Ẑ) which is at-
tached to the interface. Its origin is on the interface. Its Ẑ-axis is collinear with the
ẑ-axis. Its X̂Ŷ plane coincides with the interface, and its X̂- and Ŷ -axes parallel to x̂ and
ŷ, respectively. Hence, the (X̂, Ŷ , Ẑ) and (x̂, ŷ, ẑ) coordinate systems are related by the
vertical translation { �X, �Y , �Z} = {�x, �y,(z + r0 + h

2
cos θ

)
ẑ

}
. (2)

2.6. The lattice of arbitrarily oriented molecules

Relative to the above defined reference frames, the intersection of the molecular
axes with the half-way plane produces a lattice whose sites are given by [13, equa-
tion (25b)]
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�r�k(θ, φ)= îr0
{
�
√

3
(
sin2 φ + sec θ cos2 φ

)+ (2k − �)(sec θ − 1) sinφ cosφ
}

+ ĵ r0
{
(2k − �)

(
sec θ sin2 φ + cos2 φ

)+ �
√

3(sec θ − 1) sinφ cosφ
}
,

(3)

where � and k are integers, θ is the tilting angle (the angle that the molecular axes make
with the normal to the interface), and φ determines the tilting plane (the plane defined
by the molecular axis and a normal to the interface). The length of vector (3) is

r�k(θ, φ) = r0

√
4
(
�2 + k2 − k�

)+ [√3� cosφ + (2k − �) sinφ
]2

tan2 θ. (4)

2.7. Auxiliary conditions

2.7.1. Restrictions on the angle of inclination
Since the molecules of the domain cannot be inclined at more than π/2 with-

out being fully submerged in the liquid phase, then the range of θ is restricted to
0 � θ � π/2. Furthermore, we require that the domain radius be large enough to
accommodate at least one molecule tilted at θ degrees to the normal. Combining these
two conditions, we find that the range of θ is restricted to

0 � θ � arcsin

[
2

(
R − r0

h

)]
. (5)

Constraint (5) is a physical “steric” constraint. It must always be satisfied, and will be
assumed to hold throughout the analysis.

2.7.2. Symmetries of the direction of inclination
Due to the symmetry of the spherocylindrical molecule, its projection on the half-

way plane is invariant under a rotation of π radians. Furthermore, the reference lattice
(the lattice of the vertically aligned molecules) is the starting point for tilting, and, due to
its hexagonal symmetry, all non-equivalent tilting orientations can be reached by restrict-
ing the angle φ to a range of π/3. Specifically, we can take this range to be 0 � φ � π/3.
In this range sinφ � 0, and (

√
3 cosφ− sin φ) � 0. The constraints on φ are dependent

on the exact symmetry of the spherocylindrical molecule, as well as the exact hexagonal
symmetry of the reference lattice. Hence, even though they simplify the analysis, we
will not make use of them in order not to irremediably restrict the validity of the result-
ing expressions. Nonetheless, we expect this symmetry to manifest itself in the resulting
equations of the present paper.

3. The occupied lattice sites

Equation (3) gives the lattice sites through which a molecular axis can potentially
pass, but it does not guarantee that the corresponding molecule is inside the domain. In
this section we will determine the values of (�, k) for which the corresponding molecule
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Figure 6. The furthest molecule and its projection on the half-way plane. Also shown is the lattice (in the
half-way plane) formed by the centers of the molecules of the domain. The occupied lattice sites (corre-
sponding to the centers of molecules confined in the domain) are indicated by dark disks. The parameters
used in generating the figure are R/r0 = 10, h/r0 = 20, θ = 30◦, and φ = −25◦. The resulting domain
radius is Rmin/r0 = 9.94952, the number of molecules is N = 23, and the packing fraction is β = 0.25654.

is inside the domain. That is, we determine the occupied lattice sites. Since the axis of
the virtual domain is perpendicular to the gas/liquid interface, then a molecule will be
totally inscribed in the virtual domain if, and only if, its projection on the half-way plane
is totally inscribed in the circle formed by the intersection of the virtual domain with
the half-way plane. Thus, by using projections, we reduce the three-dimensional prob-
lem of inscribing molecules in a cylinder, into a two-dimensional problem of inscribing
molecular projections inside a circle, as shown in figure 6.

3.1. Parameterizing the projection

The molecular projection on the half-way plane is divided into four segments, as
shown in figure 7. The two half-circles s1 and s2 and the two straight lines s3 and s4. The
center of symmetry of the molecular projection on the half way plane is designated by c0

and situated at a lattice site. The vector from the origin of coordinates to c0 is �r�k(θ, φ) as
given by equation (3). The centers of the two half-circles (boundaries of the projection
of the hemispherical parts of the molecule) are designated by c1 and c2. The mid-points
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Figure 7. The projection of a molecule on the half-way plane is divided into four segments: two half-circles
s1 and s2 and the two straight lines s3 and s4. The center of symmetry of the molecular projection is c0. The
vector from the origin to c0 is �r�k(θ, φ). The centers of the two half-circles are c1 and c2. The mid-points of
the two straight segments are c3 and c4. The vectors from the origin to cq (q = 0, 1, 2, 3, 4) are designated
by �r(cq). The parameters used in generating the figure are r0 = 1.25, R = 8, h = 10, θ = π/5, and
φ = −π/7. The coordinates of the center of the molecular projection are given via equation (3) by � = 2

and k = 3.

of the two straight segments (boundaries of the projection of the cylindrical part of the
molecule) are designated by c3 and c4. The vectors from the origin of coordinates to cq
(q = 0, 1, 2, 3, 4) will be designated by �r(cq). The vectors −−→c0cq from c0 to cq are given
by

−−→c0cq =
 (−1)q

h sin θ

2
m̂ for q = 1, 2,

(−1)qr0n̂ for q = 3, 4,
(6)
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where m̂ and n̂ are given by equation (1). Since

�r(cq) = �r�k(θ, φ)+−−→c0cq, q = 0, 1, 2, 3, 4, (7)

then, making use of equations (3) and (6), this can be written out explicitly as

�r(cq)= îr0

{
�
√

3
(

sin2 φ + sec θ cos2 φ
)+ (2k − �)(sec θ − 1) sinφ cos φ

+ (−1)q
h

2r0
sin θ cosφ

}
+ ĵ r0

{
(2k − �)

(
sec θ sin2 φ + cos2 φ

)+ �
√

3(sec θ − 1) sinφ cos φ

+ (−1)q
h

2r0
sin θ sin φ

}
, q = 1, 2, (8a)

and

�r(cq)= îr0
{
�
√

3
(

sin2 φ + sec θ cos2 φ
)+ (2k − �)(sec θ − 1) sin φ cosφ

− (−1)q sin θ
}

+ ĵ r0
{
(2k − �)

(
sec θ sin2 φ + cos2 φ

)+ �
√

3(sec θ − 1) sin φ cosφ

+ (−1)q cos θ
}
, q = 3, 4. (8b)

To continue with the paramatrization we designate by �r(P ) = (x(P ), y(P )) the
vector from the origin of coordinates to a point P on the perimeter of the projection (on
the half-way plane) of the molecule whose center is at �r�k(θ, φ). The coordinates of P

are given by

�r(P ) =
{ �r(cq)+ r0ê(P ) for q = 1, 2,

�r(cq)+ m̂ξ for q = 3, 4,
(9)

where ê(P ) is a unit vector in the direction
−−→
cqP , and ξ is restricted to the range

−(h/2) sin θ � ξ � (h/2) sin θ .

3.2. The furthest point of a molecular projection

In this section we want to determine the radius vector �rmax ≡ �r(Pmax) from the
origin (center of the virtual domain) to the furthest point Pmax of the projection of the
molecule on the half-way plane. We proceed in three steps:

(i) First we prove that the furthest point is on one of the two half-circles.

(ii) Then we find the furthest point on a half-circle.

(iii) Finally we find the center of the half-circle that is furthest from the origin.

The three results combined determine the point, on the molecular projection, which is
furthest from the origin.
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3.2.1. The furthest point on a straight segment
The furthest point of the molecular projection necessarily lies on the projection of

one of the hemispheres. That is:

max
{
r(P ∈ s1 ∪ s2︸ ︷︷ ︸

projection of
hemispheres

)
}

� max
{
r(P ∈ s3 ∪ s4︸ ︷︷ ︸

projection of
cylinder

)
}
. (10)

This result can be proved by showing that the furthest point on a straight segment lies at
one of its extremities. In other words, it lies on the intersection of the straight segment
(part of the boundary of the projection of the cylindrical part of the molecule) with a half-
circle (boundary of the projection of one of the hemispherical parts of the molecule).

The radius vectors to points on the straight segments s3 and s4 are given by equa-
tion (9). Hence, their lengths are given by

r2(P ) = ξ 2 + 2�r(cq) · m̂ξ + r2(cq),

−h

2
sin θ � ξ � h

2
sin θ, P ∈ sq, q = 3, 4. (11)

Corresponding to every point P(ξ) ∈ sq for q = 3, 4 we define two points P+ ≡ P(ξ+)
and P− ≡ P(ξ−) corresponding to ξ+ = +|ξ | and ξ− = −|ξ |, respectively. Then

r2(P±) = |ξ |2 ± 2�r(cq) · m̂|ξ | + r2(cq),

0 � |ξ | � h

2
sin θ, P± ∈ sq, q = 3, 4. (12)

As |ξ | varies from zero to (h/2) sin θ , P+ and P− move out from cq to the extremities of
the straight segment sq (see figure 8). As can be seen from equation (12), the difference
between r2(P+) and r2(P−) is equal to �r(cq) · m̂ which is constant, and consequently,
as |ξ | varies from zero to (h/2) sin θ , the relation between r2(P+) and r2(P−) remains
invariant. Hence, we can designate by r2(P>) the larger of r2(P+) and r2(P−), or ex-
plicitly,

r2(P>) = |ξ |2+ 2
∣∣�r(cq) · m̂∣∣|ξ | + r2(cq), 0 � |ξ | � h

2
sin θ, P> ∈ s3 ∪ s4. (13)

The above expression for r2(P>) is a monotonically increasing function of |ξ |, and takes
its maximum value when |ξ | is maximum (|ξ |max = (h/2) sin θ). That is, r2(P>) is
maximum when point P> is at one of the extremities of either the straight segment s3 or
the straight segment s4. But every extremity of a straight segment lies on a half-circle
(projection of one of the two hemispheres). This completes the proof of equation (10)
which states that the furthest point of the molecular projection lies on the projection of
one of the two hemispheres.

3.2.2. The furthest point on a half-circle
Having established that the furthest point necessarily lies on the projection of one

of the two hemispheres, we now proceed to determine the furthest point on the projection
of a hemisphere. Consider a circle in the half-way plane centered at the origin and
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Figure 8. Geometric proof that the furthest point on a straight segment of the molecular projection lies on
one of its extremities. That is, it lies on one of the two half-circles. The parameters used in generating the
figure are r0 = 1.25, R = 8, h = 10, θ = π/5, and φ = −π/7. The coordinates of the center of the

molecular projection are given via equation (3) by � = 2 and k = 3.

circumscribing the molecular projection (see figure 9). Since the point Pmax (the point,
furthest from the origin, on the molecular projection), lies on one of the two half-circular
sections s1 or s2 (boundaries of the projections of the molecular hemispheres), then the
circumscribing circle is tangent, either to s1 or to s2, at Pmax. Hence, if we draw a tangent
to the circumscribing circle at Pmax, this tangent will also be tangent to the inscribed half-
circular projection, and the respective radii, from the centers of the inscribed circle and
the circumscribing circle, to the point of tangency Pmax will both be perpendicular to this
tangent, and hence, collinear to each other. In other words, the line from the origin to
Pmax passes through the center of one of the two half-circles s1 or s2. Consequently, the
length of the radius vector from the origin to Pmax (the furthest point of the molecular
projection) is given by
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Figure 9. Geometric proof that the line from the origin to the furthest point passes through the center
of one of the two half-circles. The parameters used in generating the figure are r0 = 1.25, R = 8,
h = 10, θ = π/5, and φ = −π/7. The coordinates of the center of the molecular projection are given via

equation (3) by � = 2 and k = 3.

rmax ≡ r(Pmax) = max
{
r(c1), r(c2)

}+ r0. (14)

The problem of determining the furthest point on a molecular projection has been re-
duced to that of determining the larger of the two radius vectors �r(c1) and �r(c2), from
the origin to c1 and c2, respectively. That is determining the furthest (from the origin) of
the projections of the centers of the two molecular hemispheres.

3.2.3. The furthest center
The radius vectors �r(c1) and �r(c2), from the origin to c1 and c2, respectively, are

given by equation (8). Their magnitudes are found (after some algebra) to be
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r2(cq)

r2
0

= 4
(
�2 + k2 − k�

)+ { h

2r0
+ (−1)q

[√
3� cosφ + (2k − �) sinφ

]
tan θ

}2

−
(
h cos θ

2r0

)2

, q = 1, 2. (15)

To underline the � and k dependence of r(cq) we rewrite it (again after some algebra) as

r2(cq)

r2
0

= 4k2
(
1+ sin2 φ tan2 θ

)+ �2
[
4+ (√3 cos φ − sinφ

)2
tan2 θ

]
+ 4k�

[(√
3 cosφ − sinφ

)
sinφ tan2 θ − 1

]+ (h sin θ

2r0

)2

+ (−1)q2k
h

r0
sinφ tan θ + (−1)q�

h

r0

(√
3 cosφ − sinφ

)
tan θ, q = 1, 2,

(16)

or as

r(cq) = r0

√
4k2A0 + 4k�B1 + 4(−1)qkB2 + �2C1 + 2(−1)q�C2 + C3, q = 1, 2,

(17)
with

A0= 1+ sin2 φ tan2 θ, (18a)

B1=
(√

3 cosφ − sinφ
)

sinφ tan2 θ − 1, (18b)

B2=
(
h sin θ

2r0

)
sinφ sec θ, (18c)

C1= 4+ (√3 cosφ − sin φ
)2

tan2 θ, (18d)

C2=
(
h sin θ

2r0

)(√
3 cosφ − sin φ

)
sec θ, (18e)

C3=
(
h sin θ

2r0

)2

. (18f)

Finally, let R�k be the radius of the smallest virtual domain cylinder that fully includes
this molecule centered at the lattice site whose radius vector is �r�k(θ, φ), then

R�k = rmax = max
{
r(c1), r(c2)

}+ r0. (19)

3.3. The inverse problem

We now have the necessary results to solve the inverse problem: given a virtual
domain cylinder with radius R, determine the range of values of � and k subject to the
constraint that all molecules centered at lattice sites whose radius vectors are �r�k(θ, φ),
are fully included in the virtual domain cylinder.
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3.3.1. The general constraint
For a molecule to be fully contained in the cylindrical domain, its projection on

the half-way plane must be fully contained inside the domain disc (cross-section of the
domain cylinder in the half-way plane). This disk has radius R. This inclusion con-
dition is, of course, guaranteed if the furthest point of the molecular projection is less
than or equal to R. Hence, the condition that a molecule centered at �r�k(θ, φ) be com-
pletely contained in the virtual cylindrical domain of radius R is given by the constraint
R�k � R. This is equivalent to the two simultaneous constraints r(cq) � R − r0 for
q = 1, 2, and, since, on physical grounds, both sides are positive, then the inequality can
be more conveniently written as

r2(cq)

r2
0

−
(
R − r0

r0

)2

� 0, q = 1, 2, (20)

or simply as

fq(�, k) � 0, q = 1, 2, (21)

where, using equation (17), the expression for fq(�, k) is found to be

fq(�, k) = 4k2A0 + 4k�B1 + 4(−1)qkB2 + �2C1 + 2(−1)q�C2 + C3 −
(
R − r0

r0

)2

,

q = 1, 2. (22)

We have suppressed the dependence of the above coefficients on θ and φ, in order to
simplify the notation and bring out the dependence of fq(�, k) on � and k.

3.3.2. The constraints on k

3.3.2.1. The functions fq(�, k). The functionfq (�, k) is a second-order polynomial
in k, and can be written as

fq(�, k) = 4k2A0 + 4kB0(�, q)+ C0(�, q), (23)

where A0 is given by equation (18a), while B0(�, q) and C0(�, q) are defined by

B0(�, q)= �B1 + (−1)qB2, q = 1, 2, (24a)

C0(�, q)= �2C1 + 2(−1)q�C2 + C3 −
(
R − r0

r0

)2

, q = 1, 2, (24b)

with B1, B2, C1, C2 and C3 given by equations (18). Explicitly, the coefficients in
equation (23) are given by

A0= 1+ sin2 φ tan2 θ, (25a)

B0(�, q)=−�+
[
(−1)q

(
h

2r0

)
+ �

(√
3 cosφ − sin φ

)
tan θ

]
sin φ tan θ, q = 1, 2,

(25b)



48 A.F. Antippa et al. / Packing of rod-like molecules. III

C0(�, q)= 4�2 +
[(

h

2r0

)
+ (−1)q�

(√
3 cosφ − sinφ

)
tan θ

]2

−
[(

R − r0

r0

)2

+
(
h cos θ

2r0

)2]
, q = 1, 2. (25c)

3.3.2.2. The roots of fq(�, k). We will now proceed to evaluate the roots k<(�, q) and
k>(�, q) of fq(�, k). Since A0 � 0, then the smaller and larger of the two roots of
fq(�, k) are given respectively by

k<(�, q) = −B0(�, q)−√((�, q)

2A0
, q = 1, 2, (26a)

and

k>(�, q) = −B0(�, q)+√((�, q)

2A0
, q = 1, 2, (26b)

where ((�, q) is given by

((�, q) = [B0(�, q)
]2 − A0C0(�, q), q = 1, 2, (27)

which, when worked out explicitly, gives, after some algebra,

((�, q)=−3�2 sec2 θ − (−1)q2
√

3�

(
h

2r0

)
cosφ tan θ

+
[(

R − r0

r0

)2

−
(
h sin θ

2r0

)2]
cos2 φ +

(
R − r0

r0

)2

sin2 φ sec2 θ,

(28)

or alternatively,

((�, q) =
(
R − r0

r0

)2[
1+ sin2 φ tan2 θ

]− [(h sin θ

2r0

)
cosφ + (−1)q

√
3� sec θ

]2

,

q = 1, 2. (29)

Combining equations (25) with equations (26) and (29) we obtain the following
explicit expressions for the roots of fq(�, k):

k<(�, q)

= 1

2[1+ sin2 φ tan2 θ]
×
{
�−

[
(−1)q

(
h

2r0

)
+ �

(√
3 cos φ − sinφ

)
tan θ

]
sinφ tan θ

−
√(

R − r0

r0

)2[
1+ sin2 φ tan2 θ

]− [(h sin θ

2r0

)
cosφ + (−1)q

√
3� sec θ

]2
}
,

q = 1, 2, (30a)
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and

k>(�, q)

= 1

2[1+ sin2 φ tan2 θ]
×
{
�−

[
(−1)q

(
h

2r0

)
+ �

(√
3 cos φ − sinφ

)
tan θ

]
sinφ tan θ

+
√(

R − r0

r0

)2[
1+ sin2 φ tan2 θ

]− [(h sin θ

2r0

)
cosφ + (−1)q

√
3� sec θ

]2
}
,

q = 1, 2. (30b)

3.3.2.3. The allowed values of k. The allowed values of k are those that guarantee that
fq(�, k) is negative for both values of q in accordance with equations (21). Now fq(�, k)

is a second-order polynomial in k, and since the coefficient of k2 in fq(�, k) is positive
definite (as can be seen from equations (23) and (25a)), then fq(�, k) is negative, when-
ever k lies in-between the roots. Thus, due to inequalities (21), the allowed values of k

are those that lie simultaneously between the roots off1(�, k) and the roots of f2(�, k).
Since k<(�, q) and k>(�, q) are respectively the smaller and the larger of the two roots
offq(�, k), then constraints (21) are equivalent to

k<(�, q) � k � k>(�, q), q = 1, 2. (31)

Since k must be integer, then the allowed range of values of k is further restricted to

kmin(�, q) � k � kmax(�, q), q = 1, 2, (32a)

where

kmin(�, q) =
[
k<(�, q)

]+
and kmax(�, q) =

[
k>(�, q)

]−
, q = 1, 2. (32b)

As defined in [1], [x]+ is the smallest integer greater or equal to x (ceiling of x), and
[x]− is the largest integer smaller or equal to x (floor of x). Thus, the allowed values of k
are those in the interval formed by the intersection of the intervals [kmin(�, 1), kmax(�, 2)]
and [kmin(�, 2), kmax(�, 2)]:

Rang k(�) = [kmin(�, 1), kmax(�, 1)
] ∩ [kmin(�, 2), kmax(�, 2)

]
. (33)

We define kmin(�) and kmax(�) respectively as the minimum and maximum values of k in
this interval. That is,

kmin(�)=min
{
Rang k(�)

}
, (34a)

kmax(�)=max
{
Rang k(�)

}
. (34b)

So, the constraint that the values of k must satisfy is

kmin(�) � k � kmax(�). (35)
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3.3.3. The constraints on �

3.3.3.1. The functions ((�, q). Equation (29) for ((�, q) can be written as

((�, q) = α�2 + 2βq�+ γ, q = 1, 2, (36)

with

α=−3 sec2 θ, (37a)

βq = (−1)q+1
√

3

(
h

2r0

)
cos φ tan θ, q = 1, 2, (37b)

γ =
[(

R − r0

r0

)2

−
(
h sin θ

2r0

)2]
cos2 φ +

(
R − r0

r0

)2

sin2 φ sec2 θ. (37c)

We note that α � 0, and, due to constraint (5), γ � 0. On the other hand, βq can be
positive or negative, depending on the value of q.

3.3.3.2. The roots of ((�, q). Since the coefficient of �2 in ((�, q) is negative, then
the ordering of the roots of ((�, q) is

�<(q) =
−βq +

√
β2
q − αγ

α
, q = 1, 2, (38a)

and

�>(q) =
−βq −

√
β2
q − αγ

α
, q = 1, 2. (38b)

Making use of equations (37), and restricting the range of θ to 0 � θ � π/2, the explicit
expressions for the above roots take the form

�<(q)= 1√
3

{
−
√(

R − r0

r0

)2(
cos2 θ cos2 φ + sin2 φ

)
+ (−1)q+1

(
h sin θ

2r0

)
cos θ cosφ

}
, 0 � θ � π

2
, q = 1, 2, (39a)

and

�>(q) = 1√
3

{√(
R − r0

r0

)2(
cos2 θ cos2 φ + sin2 φ

)
+ (−1)q+1

(
h sin θ

2r0

)
cos θ cosφ

}
, 0 � θ � π

2
, q = 1, 2. (39b)

The product of the roots of ((�, q) is given by

�<(q)�>(q) = γ

α
� 0, q = 1, 2. (40a)
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That the product of the roots is non-positive, follows from the fact that α is non-positive,
and γ is non-negative. Equation (40a) guarantees that the larger root is non-negative and
the smaller root is non-positive:

�<(q) � 0 and �>(q) � 0, q = 1, 2. (40b)

3.3.3.3. The allowed values of �. The allowed values of � are those for which k<(�, q)

and k>(�, q) are both real. This will be true provided that ((�, q) is positive. Since
((�, q) is a second-order polynomial in �, and since the coefficient of �2 is negative (as
can be seen from equation (37a)), then ((�, q) is positive for values of � in-between the
roots of ((�, q):

�<(q) � � � �>(q), q = 1, 2. (41)

Since � must be integer, then inequality (41) should be further restricted to

�min(q) � � � �max(q), q = 1, 2, (42a)

where

�min(q) =
[
�<(q)

]+
and �max(q) =

[
�>(q)

]−
, q = 1, 2. (42b)

If we define �min and �max by

�min = max
{
�min(1), �min(2)

}
and �max = min

{
�max(1), �max(2)

}
, (43a)

then the two simultaneous inequalities (42a) can be combined into

�min � � � �max. (43b)

Since sin θ � 0, in the range 0 � θ � π/2, then it is easy to see, from equations
(39a) for �<(q) and (39b) for �>(q), that the following relations hold:

�min =
[
− 1√

3

{√(
R − r0

r0

)2(
cos2 θ cos2 φ + sin2 φ

)+ (h sin θ

2r0

)
| cosφ| cos θ

}]+
,

0 � θ � π

2
, (44a)

and

�max =
[

1√
3

{√(
R − r0

r0

)2(
cos2 θ cos2 φ + sin2 φ

)− (h sin θ

2r0

)
| cos φ| cos θ

}]−
,

0 � θ � π

2
. (44b)

Using the identity [−x]+ = −[x]−, we have

�min = −�max. (45)
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The range of values of � as given by (43b) does guarantee that kmin(�, q) and
kmax(�, q) are real for both q = 1 and q = 2. On the other hand, it does not guar-
antee that the range of allowed values of k, Rang k(�), as given by equation (33), is not
empty. Hence, the range of values of � may be smaller than that given by (43b), and cor-
responds to values of � within this range for which Rang k(�) �= ∅ (∅ being the empty
set). Hence, equation (43b) should be replaced by

�min � � � �max, (46)

where

�min = min
{
� | �min � � � �max;Rang k

(
�min

) �= ∅} (47a)

and

�max = max
{
� | �min � � � �max;Rang k

(
�max

) �= ∅}. (47b)

3.4. The boundary

The radius of the virtual domain is the smallest virtual cylinder radius that fully
contains the physical domain. By combining the solutions of the direct and inverse
problems solved above, we can determine the radius of the virtual domain. This is done
in two iterations. First given a radius R, we determine the values of kmin(�) and kmax(�)

via equation (34), and the values of �min and �max via equation (47). Then the minimal
domain radius is given by

Rmin = max
[
Rk� | kmin(�) � k � kmax(�); �min � � � �max

]
, (48)

where Rk� is the radius of the circle circumscribing the projection on the half-way plane
of the molecule centered at the lattice site corresponding to (�, k). It is given by equa-
tion (19). The rigorous analytic solution of the above optimization problem (48) opens
up a whole new chapter of investigation and will not be dealt with here. Since all expres-
sions appearing on the right-hand side of (48) are analytic, the numerical solution of the
above equation is easily handled by any computer. This, of course, is one of the major
reasons for pushing the analytic solution as far as possible.

4. The number of molecules and packing fraction

4.1. The number of molecules

The number of molecules in a domain is the number of occupied lattice sites. There
is one lattice site for every allowed pair of values (�, k). The allowed values of � are
given via equations (47), and for every allowed value of � the number N� of allowed
values of k is given by

N� = kmax(�)− kmin(�)+ 1, (49)

where kmin(�), kmax(�) are given by equation (34).
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The number N of spheromolecules of radius r0, of cylindrical length h, of inclina-
tion θ in the direction φ, in a domain of radius �R is obtained by summing N� over all
allowed values of �:

N =
�max∑

�=�min

N� =
�max∑

�=�min

[
kmax(�)− kmin(�)+ 1

]
, (50)

where �min and �max are given by equation (47).

4.2. Packing fraction

Once N is evaluated, the packing fraction can be calculated. Since the problem of
arbitrarily inclined molecules is inherently three-dimensional, we will define the packing
fraction β as the ratio of the volume occupied by the molecules to the total volume of
the virtual domain cylinder:

β = N
Vm

VD
, (52)

where Vm and VD are the volume of a spheromolecule and the volume of the cylindrical
domain, respectively. They are given by

Vm=πr2
0

(
h+ 4

3
r0

)
, (53a)

VD=π
(
h cos θ + 2r0

)
R2

min. (53b)

Hence,

β = (1+ 4r0/3h)(r0/Rmin)
2

(cos θ + 2r0/h)
N, (54)

where Rmin and N are given by equations (48) and (50), respectively.

5. Results and discussion

5.1. Input and output parameters

The analytic results obtained here permit us to make an extensive study of the static
structure of domains made up of arbitrarily oriented spherocylindrical molecules aligned
parallel to each other, in terms of the four inherent dimensionless input parameters of the
problem. These input parameters are:

(i) R/r0, the upper bound on the domain radius in units of the molecular ra-
dius r0;

(ii) h/r0, the length of the cylindrical part of the molecule in units of r0;

(iii) θ , the angle of inclination of the molecular axes with respect to the normal to
the interface;

(iv) φ, the direction of inclination of the molecular axes.
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The output parameters are:

(i) {(�, k)}, the set of occupied lattice sites;

(ii) Rmin, the radius of the domain;

(iii) N , the number of molecules in the domain;

(iv) β, the packing fraction.

An extensive numerical study of the static domain structure in terms of the four indepen-
dent input parameters is too voluminous to include in the present article. Furthermore,
the main usefulness of analytic results, like the ones obtained here, is to render such nu-
merical studies superfluous. Hence, we will instead restrict the discussion to a systematic
understanding of the structure of the solution.

5.2. The length scale

The first scale of the problem is determined by the atomic parameters rH and rC,
the single-bonded covalent radii of the hydrogen and carbon atoms, respectively [16].
The second scale is set by the molecular radius r0 (the radius of the cylindrical part of
the molecule), and the relative length h/r0 of the cylindrical part of the molecule. These
molecular parameters are given [2, equation (36)] in terms of the atomic radii rH and rC,
the tetrahedral angle χ , and the number n of carbon atoms in the aliphatic chain [16–18].
For organic molecules of biological interest in Langmuir films [19–22], the value of the
molecular radius is r0 = 1.36 Å, while the value of h/r0 ranges from 16 to 22 as shown
in [2, table 1]. We take the value h/r0 = 20 as a “standard” value. The results obtained in
the present work are all scale invariant under a change in the value of r0. The third scale is
determined by the domain radius, R/r0, which is a function of the number N , dimension
h/r0 and orientation (θ, φ) of the molecules in the domain. The fourth scale determines
the film structure in terms of the domain parameters, and will be dealt with subsequently.

5.3. Graphic simulation

All the figures appearing in this article are high resolution graphics [23] pro-
grammed using the equations developed in this work. They are three-dimensional virtual
reality rendering of the packing of spherocylindrical molecules inside a right circular
cylindrical domain. Their visual appearance provides confirmation of the validity of the
algebraic results obtained here. Quantitatively, the number of molecules in a domain can
be counted off the graphs and compared with the number predicted by equation (50). We
can perform such “graphic experiments” at will, and in all cases the visual and algebraic
results agree.

As an example consider figure 2, depicting the packing of spherocylindrical mole-
cules inside a right circular cylindrical domain, for “standard” molecules (h/r0 = 20),
inclined at an angle θ = 30◦ to the normal (to the interface), in a direction φ = −45◦,
inside a cylindrical domain of relative radius bounded by R/r0 = 15 (leading to
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Table 1
Range of k versus � for the allowed values of �. The input parameters are
R/r0 = 15, h/r0 = 20, θ = 70◦, and φ = 45◦. The resulting domain
radius is Rmin/r0 = 14.6055; the number of molecules is N = 13, and

the packing fraction is β = 0.147061.

� kmin(�, 2) kmax(�, 2) kmin(�, 1) kmax(�, 1) Rang k(�)

4 −4 −2 −1 4 { }
3 −4 −1 −1 4 {−1}
2 −5 0 −1 4 {−1, 0}
1 −5 0 −1 5 {−1, 0}
0 −5 1 −1 5 {−1, 0, 1}
−1 −5 1 0 5 {0, 1}
−2 −4 1 0 5 {0, 1}
−3 −4 1 1 4 {1}
−4 −4 1 2 4 { }

Rmin/r0 = 14.9796). Furthermore, it is visually apparent that the domain includes the
largest number of molecules possible. We count 83 molecules in the domain, and this
is the exact result obtained from equation (50). In all figures appearing in this paper,
the number of molecules indicated is that calculated according to equation (50). This
number can, in each case, be checked visually by counting molecules.

5.4. The existence of a solution

The necessary and sufficient condition for a solution to exist (to have a non-empty
domain) is that inequality (5) be satisfied. This inequality guarantees that the domain is
large enough to accommodate at least one molecule. Technically, each occupied lattice
site in the half-way plane is the center of a molecule, and the occupied lattice sites
are determined by the allowed values of (�, k). Inequality (5) guarantees, according to
equation (40b), that �<(q) � 0 and �>(q) � 0. This in turn, according to equation (42),
guarantees that �min(q) � 0 and �max(q) � 0. Consequently, according to equation (43),
the set of allowed values of � is not empty, � = 0 being necessarily a solution. In
appendix, we will prove that, for � = 0, the set of allowed values of k is not empty
either, k = 0 being necessarily a solution. Hence, when constraint (5) is satisfied, then
there is at least one molecule in the domain. It corresponds to (� = 0, k = 0), and hence,
its center is situated at the center of the cylindrical domain (see equation (3)) which is
also the origin of coordinates.

5.5. The range of k

Table 1 shows the values of kmin(�, q) and kmax(�, q) for q = 1, 2, as well
as Rang k(�), for �min � � � �max. According to equation (33), the values of
k appearing in Rang k(�) are those which simultaneously satisfy the two constraints
kmin(�, 1) � k � kmax(�, 1) and kmin(�, 2) � k � kmax(�, 2). When � takes its limiting
values �min = −4 and �max = +4, Rang k(�), as seen from table 1, is empty. So, even
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Table 2
Output domain parameters versus direction of inclination φ. The other input parameters are R/r0 = 15,

h/r0 = 20, θ = 30◦.
φ �min �max N Rmin β

+90◦ −8 8 85 14.8227 0.427171
+80◦ −7 7 85 14.8219 0.427221
+70◦ −7 7 87 14.9682 0.428766
+60◦ −6 6 85 14.6015 0.440216
+50◦ −6 6 87 14.9682 0.428766
+40◦ −5 5 85 14.8219 0.427221
+30◦ −5 5 85 14.8227 0.427171
+20◦ −4 4 85 14.8219 0.427221
+10◦ −4 4 87 14.9682 0.428766

0◦ −4 4 85 14.6015 0.440216
−10◦ −4 4 87 14.9682 0.428766
−20◦ −4 4 85 14.8219 0.427221
−30◦ −5 5 85 14.8227 0.427171
−40◦ −5 5 85 14.8219 0.427221
−50◦ −6 6 87 14.9682 0.428766
−60◦ −6 6 85 14.6015 0.440216
−70◦ −7 7 87 14.9682 0.428766
−80◦ −7 7 85 14.8219 0.427221
−90◦ −8 8 85 14.8227 0.427171

though the constraints on � allow it to take all values in the interval �min � � � �max

with �min = −4 and �max = +4, only values of � in the range �min � � � �max with
�min = −3 and �max = +3 do lead to occupied lattice sites.

The results obtained in table 1 correspond to R/r0 = 15 (imposed upper bound on
the domain radius), h/r0 = 20 (length of the cylindrical part of the molecule), θ = 70◦
(angle of inclination) and φ = 45◦ (direction of inclination), leading to �min = −4,
�max = +4, Rmin/r0 = 14.6055 (domain radius), N = 13 (number of molecules), and
β = 0.147061 (packing fraction). The number of molecules N can be obtained from
table 1, by counting the number of allowed values of k, that is, by summing the lengths
of Rang k(�) over � from �min = −4 to �max = +4, or equivalently from �min = −3 to
�max = +3.

5.6. The range of �

Table 2 shows the values of �min and �max as well as N , Rmin/r0 and β correspond-
ing to R/r0 = 15, h/r0 = 20, and θ = π/6, for values of the angle φ scanning the range
−90◦ � φ � +90◦ by increments of 10◦. There are a number of features in table 2 that
are worth underlining:

(i) The values of Rmin, N , and β are symmetric under a rotation of φ = π/3
about the z-axis. This is an expected direct consequence of the hexagonal
symmetry of the reference lattice as pointed out in section 2.7.2.
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Figure 10. The projection on the half-way plane of the furthest molecule, as a function of the direction of
inclination φ. Also shown is the vector from the origin to the furthest point as well as the centers of the
molecular projections. The parameters used in generating the figure are r0 = 1, R = 15, h = 20, θ = π/3,

while φ scans the range −π/2 � φ � π/2 by increments of π/8.

(ii) The largest number of molecules that can be fitted in a cylindrical domain
having a radius �R does not necessarily correspond to the highest density.
At φ = 10◦ for example, we can accommodate a maximum of 87 molecules.
These 87 molecules are fully contained within a cylinder of relative radius
Rmin/r0 = 14.9682 leading to a packing fraction of β = 0.428766. On the
other hand, if the inclination direction is φ = 0◦, then the maximum number
of molecules that can be accommodated is only 85. But these molecules are
fully contained within a cylinder of relative radius Rmin/r0 = 14.6015 leading
to a higher packing fraction of β = 0.440216. So the precise evaluation of
Rmin/r0, rather than the use of the input upper bound R/r0, is important.
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Figure 11. The number N of molecules in a domain as a function of the direction of inclination φ, for various
values of the inclination angle θ . The values of the other input parameters are R/r0 = 15 and h/r0 = 20.

The variation of N with φ for the case θ = 40◦ is shown amplified in the lower part of the graph.

(iii) Table 2 seems to indicate that the most dense packing corresponds to inclina-
tions in the direction of next nearest neighbors (φ = −π/3, 0, +π/3). This
is a misleading artifact arising from the specific choice of parameters. The
optimal value of φ is actually a complicated function of the input parameters
R/r0, h/r0, and θ .

5.7. The number of molecules

Figure 11 gives the number of molecules N as a function of the direction of incli-
nation φ, for different values of the angle of inclination θ . The value of the other input
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Figure 12. The packing fraction β as a function of the direction of inclination φ, for various values of the
inclination angle θ . The values of the other input parameters are R/r0 = 15 and h/r0 = 20. The variation

of β with φ for the case θ = 40◦ is shown amplified in the lower part of the graph.

parameters are R/r0 = 15 and h/r0 = 20. It is easily seen that the dependence of the
number of molecules on φ, is small compared to its dependence on θ . It is also worth
noting that the maxima and minima of N as a function of φ, vary with θ . The φ “signal”
corresponding to θ = 40◦ is shown amplified in the lower part of the graph.

5.8. The packing fraction

Figure 12 gives the packing fraction β as a function of the direction of inclination φ,
for different values of the angle of inclination θ . The values of the other input parameters
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Figure 13. Three-dimensional graphic simulation of the configuration of the domain molecules as a function
of the direction of inclination φ in the range −π/2 � φ � −π/6. φ varies by steps of π/6. The angle of

inclination θ is held fixed at θ = π/3, and the other input parameters are R/r0 = 12 and h/r0 = 20.

are R/r0 = 15 and h/r0 = 20. Again, and as expected, the dependence of the packing
fraction on φ, is small compared to its dependence on θ , and the maxima and minima of
β as a function of φ, vary with θ . The φ “signal” corresponding to θ = 40◦ is shown
amplified in the lower part of the graph.

5.9. The direction of inclination

Figure 13 shows a three-dimensional graphic simulation of the domain molecules
as a function of the direction of inclination φ in the range −π/2 � φ � −π/6 by
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Figure 14. Three-dimensional graphic simulation of the configuration of the domain molecules as a function
of the direction of inclination φ in the range −π/2 � φ � −π/4. φ varies by steps of π/12. The angle of

inclination θ is held fixed at θ = π/6, and the other input parameters are R/r0 = 12 and h/r0 = 20.

increments of π/6. The angle of inclination θ is held fixed at θ = π/3, and the other
input parameter are R/r0 = 12 and h/r0 = 20. It is easily seen from the figure that
the effect of φ on the molecular configuration is considerable. The optimal direction
of inclination in this case is in the direction of the principal axis of symmetry of the
reference lattice, that is, in the direction of the ŷ-axis (or φ = −π/2). Due to the
hexagonal symmetry an equivalent optimal configuration must appear (φ = π/3 further
on, that is, for φ = −π/6, and this is actually the case (as is evident from figure 13).
The number of molecules varies from 5 to 7, that is, by about 40%. The packing fraction
varies between 0.0674 and 0.0935, that is, by about 50%.

Note that the most condensed configurations, those corresponding to φ = −π/2
and φ = −π/6, do not correspond to the largest packing fraction. Actually the largest
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Figure 15. Three-dimensional graphic simulation of the configuration of the domain molecules for
φ = −π/2 (inclination in the direction of a principal axis of symmetry). The values of the other input

parameters are θ = π/6, R/r0 = 12 and h/r0 = 20.

packing fraction corresponds to φ = −π/3, and for this direction of inclination the
molecules are the least compacted. This underlines the fact that the three-dimensional
packing fraction as defined by equation (52) is above all a measure useful in inter-domain
interactions. The compactness of the molecular configuration (which lowers the Van
der Waals domain energy) requires a different (two-dimensional) indicator defined in
the cross-sectional plane of the physical domain. The discrepancy between the two
indicators increases with increasing molecular inclination and decreasing domain radius.
On the other hand, for larger domains or small tilting angles, the two indicators converge.

Figure 14 shows a three-dimensional graphic simulation of the domain molecules
as a function of the direction of inclination φ in the range −π/2 � φ � −π/4 by
increments of π/12. The angle of inclination θ is held fixed at θ = π/6, and the
other input parameters are R/r0 = 12 and h/r0 = 20. In spite of the reduced an-
gle of inclination, the effect of φ on the molecular configuration is still considerable.
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Figure 16. Three-dimensional graphic simulation of the configuration of the domain molecules for
φ = −π/4. The values of the other input parameters are θ = π/6, R/r0 = 12 and h/r0 = 20.

The optimal direction of inclination in this case is again in the direction of the prin-
cipal axis of symmetry of the reference lattice, that is, in the direction of the ŷ-axis
(or φ = −π/2). But now maximum compactness is in phase with the maximum value
of the three-dimensional packing fraction. The value of N varies between 39 and 45, the
value of β varies between 0.308 and 0.350 (about 15% variation in both cases).

Figures 15–17 show an enlargement of the domain for three characteristic direc-
tions: (i) φ = −π/2 (inclination in the direction of a principal axis of symmetry),
(ii) φ = 0 (inclination in the direction of a secondary axis of symmetry), and (iii) incli-
nation in the intermediate direction φ = −π/4. In all three cases, the input parameters
are θ = π/6, R/r0 = 12 and h/r0 = 20.

6. Conclusion

This paper presents a theoretical model for the organization of phospholipidic
molecular domains in Langmuir films at the gas/liquid interface. The molecules of the
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Figure 17. Three-dimensional graphic simulation of the configuration of the domain molecules for φ = 0
(inclination in the direction of a secondary axis of symmetry). The values of the other input parameters are

θ = π/6, R/r0 = 12 and h/r0 = 20.

domain are modeled as spherocylinders. They are rigid, close packed, and aligned par-
allel to each other. Their collective orientation is completely arbitrary. The molecular
organization is described by four input parameters. These are h/r0, R/r0, θ and φ. The
molecular radius r0 (which sets the scale), and the length h of the cylindrical part of the
molecule, are given in terms of atomic parameters. R is the input domain radius, and
(θ, φ) are the spherical angles that determine the orientation of the molecular axes.

In terms of these input parameters, we determine the molecular organization of
the domain. Specifically, analytic expressions are obtained for �min, �max, kmin(�) and
kmax(�). These parameters define the boundaries of the set of allowed values of (�, k).
These latter, in turn, determine, via equation (3), the positions of the centers of the
molecules of the domain. In the language of this article, they determine the occupied
lattice sites in the half-way plane. We thus obtain an analytic determination of the static
structural organization of the domain including boundaries.

As a first application, we evaluate the domain radius Rmin, the number N of mole-
cules in the domain, and the packing fraction β. Rmin varies almost linearly with R, but
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does not vary significantly with θ and φ. As for N , the hierarchy of influence of the
input parameters is R, θ , φ. For β, on the other hand, this hierarchy is more complicated
and itself varies with the value of R. Finally, the dependence of the molecular configura-
tion on the direction of inclination φ is considerable, and more than what was expected
intuitively.

Appendix

In this appendix, we want to prove that, for � = 0, the set of allowed values of k

is not empty, k = 0 being necessarily a solution. To prove this we note that for � = 0,
equations (30) reduce to

k<(0, q)=− 1

2[1+ sin2 φ tan2 θ]
×
{
(−1)q

(
h

2r0

)
sin φ tan θ

+
√(

R − r0

r0

)2[
1+ sin2 φ tan2 θ

]− (h sin θ

2r0

)2

cos2 φ

}
, q = 1, 2,

(A.1a)

and

k>(0, q)=+ 1

2[1+ sin2 φ tan2 θ]
×
{
−(−1)q

(
h

2r0

)
sinφ tan θ

+
√(

R − r0

r0

)2[
1+ sin2 φ tan2 θ

]− (h sin θ

2r0

)2

cos2 φ

}
, q = 1, 2.

(A.1b)

The expression under the radical sign is ((0, q), derived (as a special case) from equa-
tion (28). It can be rewritten as

((0, q)=
{(

R − r0

r0

)2

tan2 θ sin2 φ +
[(

R − r0

r0

)2

−
(
h sin θ

2r0

)2]
cos2 φ

+
(
R − r0

r0

)2}1/2

, q = 1, 2, (A.2)

and due to constraint (5), it satisfies the following inequality:

((0, q) �
∣∣∣∣(R − r0

r0

)
tan θ sinφ

∣∣∣∣, q = 1, 2. (A.3)
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Consequently,

k<(0, q) � 0 and k>(0, q) � 0, q = 1, 2. (A.4)

The above inequalities (A.4) guarantee, according to equation (32b), that
kmin(0, q) � 0 and kmax(0, q) � 0. Consequently, according to equations (33)–(35),
the range of allowed values of k (corresponding to � = 0) is not empty, k = 0 being
necessarily a solution.
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